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Abstract— A cognitive tri-band transmitter (TX) with a
forwarded clock using multiband signaling and high-order dig-
ital signal modulations is presented for serial link applica-
tions. The TX features learning an arbitrary channel response
by sending a sweep of continuous wave, detecting power
level at the receiver side, and then adapting modulation
scheme, data bandwidth, and carrier frequencies accordingly
based on detected channel information. The supported mod-
ulation scheme ranges from nonreturn to zero/Quadrature
phase shift keying (QPSK) to Pulse-amplitude modulation (PAM)
16/256-Quadrature amplitude modulation(QAM). The proposed
highly reconfigurable TX is capable of dealing with low-cost serial
channels, such as low-cost connectors, cables, or multidrop buses
with deep and narrow notches in the frequency domain (e.g.,
a 40-dB loss at notches). The adaptive multiband scheme
mitigates equalization requirements and enhances the energy
efficiency by avoiding frequency notches and utilizing the max-
imum available signal-to-noise ratio and channel bandwidth.
The implemented TX prototype consumes a 14.7-mW power
and occupies 0.016 mm? in a 28-nm CMOS. It achieves a
maximum data rate of 16 Gb/s with forwarded clock through
one differential pair and the most energy efficient figure of
merit of 20.4 wW/Gb/s/dB, which is calculated based on power
consumption of transmitting per gigabits per second data and
simultaneously overcoming per decibel worst case channel loss
within the Nyquist frequency.

Index Terms— Cognitive, continuous-time linear equaliza-
tion (CTLE), decision feedback equalization (DFE), digital
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modulation, energy efficiency, feedforward equalization (FFE),
forwarded clock, Inter-Symbol Interference (ISI), memory inter-
face, uW/Gb/s/dB, multiband signaling, multidrop bus (MDB),
multilevel signaling, nonreturn to zero (NRZ), pulse-amplitude
modulation (PAM), quadrature amplitude modulation (QAM),
serial link, source synchronous, transmitter (TX), wireline.

I. INTRODUCTION

HE data rate of peripheral serial I/O for PC and mobile

computing platforms continue to scale to meet high-
bandwidth applications including high-resolution displays,
camera sensors, and large-capacity external storage [1]. With
ever-increasing data rate, signal and power integrity become
more challenging issues because of various channel loss mech-
anisms, as well as discontinuities caused by vias, solder balls,
packages, routing wire impedance mismatches, and connector
or cable transitions, which set the upper boundary of band-
width capacity. Such examples of nonidealities are shown with
the multidrop bus (MDB) channel for memory interface and
low-cost peripheral serial I/Os with a connector and a cable in
Fig. 1(a) and (b), respectively. When considering a cable-only
case, the dielectric and conduction loss would exhibit a simple
low-pass characteristic, depicted by the dashed curve in
Fig. 1(b). However, the packages, solder balls, bonding wires,
vias, traces, and connectors make the complete channel suffer
from a higher loss at certain frequencies, as depicted by the
solid curve in Fig. 1(b). The phenomenon is more pronounced
in low-cost packaging, Printed Circuit Board (PCB), cable, and
connector technologies. To make the matter even worse, the
frequency response varies over different packages and PCB
designs.

One obvious and straightforward solution to reduce such
effects is to invest more resource in via, packaging, connector,
and cable technologies [2]. Furthermore, depending on data
rate requirements relative to the available channel bandwidth
and severity of potential noise sources, a comprehensive com-
bination of equalization schemes, such as feedforward equal-
ization (FFE), continuous-time linear equalization (CTLE) and
decision feedback equalization (DFE), is employed at the
transmitter (TX) side or receiver (RX) side [3]-[8]. While
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Fig. 1. Two different channel conditions. (a) MDB channel for memory interface application. (b) Low-cost connector and cable channel for peripheral

serial 1/Os.

TXFIR EQ

RX CTLE + DFE EQ

L by 10Gb/s single-bit

N \/ ! \/ N '3 response

e H i 02 : UI = 1pops

40 iDB 0 T

MDB 5 \ :

0 4 6 8 0 "0 05 1 16 2 25 3

(b)
TX: 3-Tap TXFIR EQ RX: 1-Tap CTLE + 24-Tap DFE
0 0.5 , —
o074 10Gb/s single-bit T T
; Z f‘""\/\/_\ o:; ! Ulrcisi:gé ;(sa —_ ;% . =
af | Low-Cost | >2 U, P u -Q\U <
~ 0.1 g-;,{ —

-0 -—Channel—{ oL\ AN oo W
505 Yy i i 22ps

a6 8 0059553553354 455

(c)

Fig. 2. Conventional comprehensive combination of equalization. (a) TRX architecture. (b) Insertion loss, single-bit response, and received eye diagram on
MDB channel. (c) Insertion loss, single-bit response, and received eye diagram on low-cost cable channel.

being elegant, backed by rigorous mathematical proof and dig-
ital signal processing concepts, the aforementioned approach
inevitably increases the overall system complexity and total
power consumption. Fig. 2(a) illustrates the common serial

link TX and RX architecture with a comprehensive combi-
nation of all the above-mentioned equalization techniques.
There are FFE at the TX side and CTLE and DFE at the
RX side.
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The system-level study reveals that if the conventional
comprehensive combination of equalization schemes are used,
much energy will be wasted in the notch frequencies, which
is explained by the worst case notch compensation principle.
Single-bit pulse responses of the two different channels in
Fig. 2(b) and (c) indicate that both of them end up with very
long tails [18 Unit Interval (Uls) in Fig. 2(b) and 24 Uls in
Fig. 2(c)] due to high-frequency loss and strong reflection at
specific frequency notches. With the two given channels (MDB
and low-cost cable/connector), even with 3-tap TX FFE, 1-
tap CTLE, and 18/24-tap DFE, the horizontal and vertical
eye openings are still very limited as shown in Fig. 2(b) and
(c). In this paper, less than a 100-mV vertical opening means
a very limited signal-to-noise ratio (SNR), and less than a
20-ps horizontal opening leads to a requirement of the high-
performance clock and data recovery (CDR) system to achieve
a reasonable bit error rate (BER).

Meanwhile, recent research suggests that the multiband
signaling could potentially be promising solutions for low-
cost low-power serial interface systems [9]-[15]. By allocating
modulating carrier frequencies and reshaping the transmitted
power spectrum, the energy is not wasted in the worst case
notch frequencies. This makes the multiband signaling par-
ticularly appealing for the channel conditions with deep and
narrow frequency notches. In [9] and [10], the noncoherent
pulse-amplitude modulation (PAM) or amplitude-shift keying
schemes were utilized in tri-band and dual-band communica-
tions, which takes only 1-D orthogonality in the frequency
domain. Later, more advanced coherent quadrature phase
shift keying (QPSK) or 16-quadrature amplitude modula-
tion (QAM) were presented in [11]-[14] to improve the
spectral efficiency. However, all the previous works assumed
specific channel conditions. Not only were the -carrier

Backward Channel

frequencies fixed but there was also no mechanism to obtain
knowledge regarding the channel frequency response. In [16],
a software programmable multitone TX was implemented.
Here, however, an 8-b high-speed digital-to-analog (DAC) was
necessary, resulting in power-hungry digital baseband circuits.
In addition, the TX was not to adapt to different channel
conditions because there is no feedback mechanism to learn
the channel response.

In this paper, we propose a cognitive tri-band serial
link TX with a frequency response learning algorithm and
the source synchronization feature without using a physi-
cal clock forwarding channel. We introduce the system-level
architecture, design considerations, and cognitive algorithm in
Sections II and III. Section IV illustrates the detailed analy-
sis and design of TX building blocks. The implementation
and characterization results and conclusions are presented in
Sections V and VI, respectively.

II. SYSTEM ARCHITECTURE OVERVIEW

In this section, the system architecture of the proposed
cognitive tri-band TX is introduced. Then, the concept of
multiband signaling is explained and compared with traditional
baseband nonreturn-to-zero (NRZ) signaling.

A. System Architecture

The block diagram of the proposed cognitive tri-band TX is
shown in Fig. 3. A modulation mapping block links pseudoran-
dom binary sequence (PRBS) binary code to its corresponding
DAC input. For different modulation schemes, the 4-b DACs
will be supplied with different data patterns. It will also map
different data patterns in phase calibration mode or channel
learning mode. Placed after DACs, the analog and RF frontend
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Fig. 4. Concept of multiband signaling with PAM-8 and 64-QAM modulators.

includes two in-phase and quadrature RF band paths and one
baseband path for clock forwarding. At the last stage, all the
signals from different bands are summed together and sent to
the channel. A cognitive controller is designed to determine
the modulation scheme and carrier frequency allocation based
on the detected channel response. The cognitive controller
also controls a carrier generation oscillator to choose carrier
frequencies or sweep the carrier frequencies among the whole
interested bands in channel learning mode. At the RX side,
a power detector and a low-speed analog-to-digital con-
verter (ADC) detect the channel response noncoherently and
feed the channel information back to the cognitive controller
at the TX side. After detection, the cognitive controller utilizes
received channel information to determine carrier frequency,
calculate the link budget, and further choose the optimum data
bandwidth and modulation scheme.

B. Concept of Multiband Signaling

The fundamental consideration of multiband signaling
is exactly the same as the cable TV system or wireless
orthogonal frequency-division multiplexing (OFDM) system.
However, both cable TV and wireless OFDM system are
relatively narrow band systems, while the serial interface is
broadband. Channel conditions of the serial interface are also
very different.

In Fig. 4, PAM-8 and 64-QAM are shown as an example.
There are 15 parallel data streams running at 1 Gb/s as a data
source. Three of them are modulated by the PAM-8 modulator,
the time-domain waveform of which are still in baseband
but with multilevel features. Six of them are passed to the
64-QAM modulator, the time-domain waveform of which is
modulated by RF carrier frequency f. Similarly, another six
of them are modulated by another RF carrier frequency f>.
Then, all of these waveforms are summed together. There are
one baseband, one RF band at f7, and another RF band at f5 in
the frequency domain, respectively.

C. Comparison of Multiband Signaling and Conventional
Baseband NRZ Signaling

In order to understand the multiband signaling in a more
intuitive way, we compare the simulated multiband results
with those of conventional baseband-only NRZ signaling by
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Fig. 5. Comparison of multiband signaling and baseband NRZ signaling on
MDB channel.

assuming the same data rate requirement of 15 Gb/s with the
MDB channel. As shown in Fig. 5, the energy of the conven-
tional baseband NRZ signal is distributed relatively uniformly
over the frequency band. When a uniformly distributed signal
passes through MDB channel with multiple frequency notches,
signal distortion happens. Severe reflections occur at different
notch frequencies, leading to strong ISI and complete closure
of the data eye. Complicated equalization with huge power
consumption is necessary to reopen the data eye. On the other
hand, in the multiband signaling case, the energy distribution
is reshaped on purpose based on the channel profile. After the
demodulator, the data eyes are clearly opened under the same
data rate and channel condition assumption.

Another factor worth noting is that the time scales for multi-
band and baseband-only cases are very different. In multiband
signaling, the total bit stream is divided into multiple sub-
bands, each of which would operate at much lower speed
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compared with the total bit rate. As a result, it relaxes the
CDR system design complicity and power consumption.

D. Self-Equalization Effect

The multiband signaling offers additional benefit in self-
equalization effect. The self-equalization effect related theory
was first detailed in [14]. Taking the basic amplitude modula-
tion (AM) signal as an example, the signal after upconversion
is double sidebanded; two sidebands actually contain dupli-
cated information. The channel loss from the upper sideband
is typically higher than that of the lower sideband. After
downconversion, the lower sideband can compensate that of
the upper sideband. In case the loss is symmetrical to the
carrier frequency, the reconstructed signal will be evenly
attenuated over the broadband frequencies.

A system simulation is conducted to verify this self-
equalization effect and compared with that of conventional
baseband NRZ signaling, as shown in Fig. 6. The MDB
channel is here replaced by a frequently used “linear” loss
channel. This channel loss profile is due to Electrostatic
Discharge, pad loading, skin effect of the metal traces and
dielectric loss of substrate materials. Again, more complicated
and power-hungry equalization is necessary to reopen the data
eye opening. On the contrary, in the multiband signaling case,
the data eyes are still clearly open after the demodulation.

E. Source-Synchronization/Forwarded-Clock Architecture

A traditional source-synchronized or forwarded clock sys-
tem is shown in Fig. 7, which reduces the power and com-
plexity of clock generation and data recovery circuits, at the
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Fig. 8. Design specification: IBI.

cost of a dedicated physical channel with clock I/O pins
for clock forwarding. In contrast, the multiband signaling,
as shown in Fig. 3, benefits from source-synchronized or
forwarded clock communication without paying the cost of
the extra clock I/O pins and channel, since the baseband
path in multiband architecture can be configured for the clock
forwarding purpose, thus eliminating the need for dedicated
extra IO pins and channel.

In summary, multiband signaling can enable simultaneous
and orthogonal communication channels in the frequency
domain. It offers options to avoid channel frequency notches
by carefully allocating carrier frequencies. Multiband signaling
also works well with forwarded clock schemes without even
increasing the number of channels and I/O pins.

III. DESIGN SPECIFICATIONS AND
COGNITIVE ALGORITHM

A. Design Specifications

Interband interference (IBI) is a very important specification
for a multiband system. For example, in Fig. 8, the 3-GHz
band is the aggressor and the 6-GHz band is the victim.
The victim band locates at the second-order harmonic of
the aggressor, which is suppressed by differential signaling.
In-band IBI is created by the sidelobe of the aggressor, and
can only be reduced by pulse shaping or filtering after the
DAC at the TX side. An 18-dB in-band IBI will be present
if there is no pulse shaping or filtering function block after
the DAC. In-band IBI could be improved to around 40 dB
by simple RC low-pass filtering. Apart from in-band IBI,
all other interferences are considered as out-of-band IBI,
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TABLE I
LINK BUDGET CALCULATION SUMMARY

QPSK [16-QAM|64-QAM|256-QAM
Required SNR
(BER < 102) 17dB | 24dB | 30dB 36dB
Bits per Symbol 2 4 6 8
Channel BW 1GHz | 1GHz | 1GHz 1GHz
Data Rate 2Gb/s | 4Gb/s | 6Gb/s 8Gb/s
Required EVM
(Norm. to Avg, Power) -3dB |-13.3dB|-21.3dB | -29.4dB

which can be rejected by the RX side of the low-pass
filter (LPF).

A link budget is calculated by the cognitive controller based
on the BER requirement and different modulation schemes.
As shown in Fig. 9, starting from the TX output power, the
signal passes through the frequency-dependent loss channel.
When arriving at the RX input, the received signal power needs
to be higher than the RX sensitivity, of which is defined in
the following in decibel meters [18]:

Prx_sen = —174 dBm/Hz + NF + 10logB + SNRyequired (1)

where —174 dBm/Hz is thermal noise floor at room temper-
ature, NF' is the RX noise figure in decibels, B is the signal
bandwidth in hertz, and SNRyequired is the required SNR in
decibels for different modulation schemes.

With detected channel loss information, the cognitive con-
troller could set TX output power level based on the following
by tuning the unit current source in the DAC based on the link
budget calculation result:

Prx = PRsten + LCH + Margin (2)
Prx = —174dBm/Hz 4+ NF + 10log B
+ SNRrequired + Lcu + Mar gin 3)

where Prx is TX output power in decibel meters, Lcy is
channel loss in decibels at the interested frequency, and Margin
is the link budget margin in decibels. Table I summarizes
the required SNRs, bits per symbol, data rates, and required
error vector magnitudes (EVMs) (normalized to signal average
power) for QPSK, 16-QAM, 64-QAM, and 256-QAM based
on the 107!2 BER.
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B. Noncoherent Channel Learning

As shown in Fig. 10, the noncoherent channel learning is
very straightforward. The TX side sweeps the frequencies
over interested bands using an external oscillator, which is
controlled by the cognitive controller. At the RX side, only
one power sensor and one low-speed ADC is needed to
extract useful channel information, such as notch frequencies,
bandwidth, and frequency-dependent channel loss. In practice,
another pair of power sensor and low-speed ADC is necessary
at the TX side in order to calibrate frequency dependency
of the TX output power level. This noncoherent detection
extracts magnitude information only and provides no phase
information. Channel learning process runs only once at the
beginning of data transfer. As long as the channel conditions
remain stable during the operation, there is no need for
additional channel learning, and therefore, the power overhead
during data transfer operation can be ignored.

C. Cognitive Algorithm Design

The cognitive algorithm is illustrated in Fig. 11. The first
step of channel learning is the noncoherent detection men-
tioned in Section III-B. The channel information needs to be
sent back through a low-cost low-speed single-ended channel.
Several important parameters are extracted by the cognitive
controller, including frequency notch location, available band-
width in each band, and channel loss profile over the whole
interested band. With the extracted channel information, the
second step is to smartly choose carrier frequency to avoid
the high-loss notch frequencies and modulation scheme based
on the system data rate and BER requirements. After that,
in the third step, the cognitive controller calculates the link
budget mentioned in Section III-A and sets the TX output
power. The cognitive controller needs to check the lookup
table for the required SNR information for the determined
modulation scheme. In the last step, the phase calibration
needs to be done for each carrier frequency before initiating
the data transmission.

D. Delay Mismatch Analysis

There are two different types of delay mismatch among
channels: 1) delay mismatch between physical channels and
2) delay mismatch between multibands.

The physical channel delay mismatch (between different
differential channels on the cable or on the PCB) is caused
by channel design and fabrication variations, as shown in
Fig. 12(a). The proposed multiband signaling is unique and
has advantages over those conventional ones to deal with
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this type of delay mismatch. The forwarded clock is embed-
ded within baseband in the frequency domain and it travels
with the data stream on the exactly same physical channel.
This feature makes the forwarded clock capable of track-
ing the delay mismatch between the different channel and
each physical channel having its own forwarded sampling
clock.

For different frequency bands delay mismatch (within the
same differential traces), more careful group delay analysis
over all the used bands in multiband signaling is necessary.
The main contribution comes from the channel condition and
impedance matching quality. Due to the relatively low symbol
rate, the group delay variance from TX on-chip circuits could
be ignored. If taking the MDB channel as an example, as
shown in Fig. 12(b), the worst case of group delay variance
happens at the notch frequencies, which means if these notch
frequency bands were used as data transmission, the eye
diagram quality could not only be degraded by a large loss
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in magnitude response but also by large in-band group delay
variance in phase response. On the contrary, the group delay
is within £100 ps around the baseband, 3-, and 6-GHz bands.
To achieve the aggregated 16 Gb/s data rate, the symbol rate
within one of the subbands is only 1 Gbaud, then horizontal
eye period is 1 ns, which is ten times of the worst case
in-band group delay variance. The situation is also similar
to another channel condition—the low-cost cable channel, as
shown in Fig. 12(c). Thus, no more delay tuning function is
necessary for the proposed multiband signaling architecture.
However, it might be necessary if the symbol rate increases
further.

IV. CIRCUIT DESIGN

A fully differential current-mode architecture is utilized for
all the circuit-level designs to suppress common mode and
other even—order harmonics. It also mitigates simultaneous
switching noise and supply and electromagnetic noise.

A 4-b DAC and a double-balanced mixer are combined
to improve energy efficiency, as shown in Fig. 13. The
4-b DAC is current steering structure, of whose output current
ranges from 20 to 950 xA with around 100-mV peak voltage
swing. A 1.2 V power supply instead of 0.9 V standard
core voltage in a 28-nm CMOS is chosen to provide more
linearity headroom. A capacitor is added at the DAC’s output
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and serves as a bandwidth limiter to alleviate the in-band
IBI issue, as explained in Section III. The double-balanced
mixer is composed of four passive switches so that the TX
output power is proportional to the DAC’s output current.
The unit bias current of DAC is digitally tunable and set by
the cognitive controller based on link budget calculation and
energy efficiency optimization.

The summation block consists of five slices as shown in
Fig. 14, for +4/+2 1/Q four RF bands and one baseband.
A termination resistor with a switch is attached in series at the
output to improve channel characteristic impedance matching
if necessary. The block needs to sum all signals from all bands
and provide broadband operation up to 8 GHz. It also needs to
subtract the dc current to avoid desensitizing the RX frontend.

The two 1x-size pMOSs mirror the differential input current
and sum them to sense dc current based on equation (4).

Iiynmos = 0.1 x (Ip + Iy) = 0.2 x Iqc 4

where I1ynmos is the current in the 1y size nMOS, Ip and
Iy are the differential input currents, and Ig. is the input
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dc current. Then, I1ynmos is copied by the 5y size nMOS,
in which Iy is subtracted from the input current.

V. IMPLEMENTATION AND MEASUREMENT RESULTS

A test chip comprising carrier generation, a digital base-
band controller, and the tri-band frontend is fabricated in a
28-nm CMOS process and occupies the 0.016-mm? area.
The data source is a 16-b parallel PRBS generator operating
up to 1 GHz. A universal asynchronous RX/TX interface is
utilized to configure the control register and monitor the TX
operation status. As shown in Fig. 15, a commercial power
detector LMX2492 EVM with a 12 b-ADC is used to detect
received power through channels from 100 MHz to 10 GHz
during TX frequency sweeping. Detected channel frequency
response information is processed by the MachX03L FPGA
board, based on which the cognitive algorithm will determine
carrier frequency allocation, modulation schemes, maximum
achievable data rate, and other reconfigurable parameters.
Two different channel conditions are tested—a 10-in low-
cost differential cable by 3M and an MDB modeled by an
open-stub transmission line on the PCB. For the RX side,
a broadband power splitter (WSCH 1579), downconversion
mixers (MZ6310C), broadband 90° hybrid (KRYTAR1230),
LPFs (SBLP 933), amplifiers (CRBAMP100), and HP 83460A
as a local oscillator constitute an instrumental RX to coher-
ently demodulate the TX output signal.

The frequency-domain measurement analysis is shown in
Fig. 16. The first column is the TX output spectrum before
the signal passes through the channel. The second column
is RX input spectrum after the signal passes through the
channel. The aggregated data rate here is 16 Gb/s and the
baseband is configured for the clock forwarding purpose, send
a half-rate clock. In Fig. 16(a), the cognitive controller learns
the MDB channel information and then shapes TX spectrum
based on the detected channel information. The main lobe
shape is maintained pretty well after the channel. However,
in Fig. 16(b), the MDB channel is replaced by a low-cost
cable channel and the cognitive controller channel learning
feature is disabled. If the same TX spectrum is sent out, the
main lobe energy and information would be corrupted after
the channel. Alternatively, in Fig. 16(c), the channel learning
option is enabled and the cognitive controller chooses carrier
frequency and data bandwidth based on channel information.
The main lobe signal after the channel is maintained well
again. Although based on two very different channel condi-
tions, the proposed serial cognitive TX is able to learn channel
information and use it to optimize configuration adaptively.

The time-domain measurement results are shown in
Fig. 17. Tt demonstrates QPSK, 16-QAM, 64-QAM, and
256-QAM modulation I/Q constellations and eye diagrams.
The forwarded clock can be directly used to sample data
without the need of Phase Lock Loop (PLL)-based CDR. A
—30-dB EVM is achieved and the IQ mismatch is calibrated
at the RX side. The proposed cognitive tri-band TX achieved
16 Gb/s without any equalization or PLL-based CDR. The eye
diagram and constellation of 256-QAM are marginal for the
10~5 BER, which is limited by the accessible instrument noise
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Fig. 15. Measurement platform.
TABLE II

PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART WORKS

VLSI’15 [6] | VLSI’15[7] | VLSI’15 [8] | JSSC’15 [11] This work
Technology 22nm CMOS | 28nm CMOS | 65nm CMOS | 40nm CMOS | 28nm CMOS
Data rate/diff. pair 8 Gb/s 13 Gb/s 14 Gb/s 7.5 Gb/s 16 Gb/s
Sionalin Base-band Base-band Base-band |Bi-band NRZ /| Tri-band QPSK/
ghaling NRZ NRZ NRZ QPSK  |16/64/256-QAM
Clock . Forwarded- Embedded Embedded Embedded Forwarded-clock
Synchronization | clock w/ extra w/o extra
Clock Clock Clock
Scheme channel channel
Area/Lane - 0.028 mm? | 0.061 mm? 0.051mm? 0.016 mm?
Power 2.56 mW 17.0 mW 12.5 mW 7.4 mW 14.7 mW
Efficiency 320 fI/bit 1308 fJ/bit 893 fI/bit 990 fI/bit 919 fJ/bit
Worst Channel Loss 45 dB (Cable)
within Nyquist Freq. 12 dB 35dB 12dB 45dB 40 dB (MDB)
20.4 (Cable)
FoM (uW/Gb/s/dB) 26.7 37.4 74.4 22.0 23.0 (MDB)

floor. For all the other modulation schemes, the BER is less
than 10712,

The BER is estimated based on the distribution of demodu-
lated signals on the received I/Q constellation. Taking one of
received signal points, errors occur when the received phasor
sample falls outside a symbol boundary. Assuming the noise is
Gaussian distribution, the addition of Gaussian noise creates a
distribution of sample points about the mean of “ideal” symbol
point. The probability density function area under the curve
beyond the symbol boundary represents the probability of that
type of error. The error probability can be calculated by inte-
grating the area from the symbol boundary to minus infinity

2
(sz")}dx 5)

where a is the decision boundary, u is the mean value of a
group of received symbol, and ¢ is the standard deviation.

ro1
P(x <a)= / Wexp |:—

The noise figures of the frontend splitter, passive mixer,
LPF, and analog baseband amplifier are 6.5, 7, 1.2, and
3.5 dB, respectively. The maximal resolution of the oscil-
loscope is 8 b. Based on the specifications of instruments
and discrete components, the maximal SNR can be measured
is 31.7 dB

Max.RXinputSNR = 8 x 6.02 4+ 1.76 — NFLpr — NFMIxXER
(6)

As shown Fig. 9, the BER changed from 10~ to 10~!2 for

256-QAM if SNR changes from 32 to 37 dB. Consequently,
the measured 10~ BER is a reasonable result matched with
the calculation.

The die photo and power consumption breakdown are
presented in Fig. 18(a) and (b), respectively. The total core
area is 0.016 mm? in the 28-nm CMOS technology with
40 pm x 300 um for the analog frontend, 50 xm x 40 um for

— NFamp — NFSpPLITTER-
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Fig. 16. Frequency-domain measurement analysis. (a) MDB channel with

enabled channel learning. (b) Low-cost cable channel with disabled channel
learning. (c) Low-cost cable channel with enabled channel learning.

Fig. 17. Time-domain measurement results.

digital control/data generation, and 50 um x 40 um for the
clock generation related circuitry. The total power consump-
tion is 14.7 mW, 34% of which is consumed in the summation
block. It is the interface with the off-chip environment and
handles the broadband operation up to 8 GHz. The power
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consumption of the controller is relatively small because it
is only running at several tens of megahertz for the initial
configuration or calibration.

Table II summarizes the comparison of silicon perfor-
mance with the state-of-the-art serial interface TX. Com-
pared with the other works, this paper achieves 16 Gb/s
per differential pair with the 919-fJ/b energy efficiency and
20.4-/23.0-tW/Gb/s/dB FoM for the low-cost cable channel
and for MDB channel, respectively. The forwarded clock
scheme is utilized without using the extra physical channel
and extra clock IO pins. The last two rows in Table II—
worst channel loss (dB) within Nyquist frequency and
FoM (uW/Gb/s/dB)—are both related to the channel
condition.

VI. CONCLUSION

In conclusion, a tri-band cognitive TX is implemented in
the 28-nm CMOS technology. It demonstrated the unique
capability of the learning arbitrary channel response and
adaptive modulation scheme from NRZ or QPSK to PAM-16
or 256-QAM. It achieved a 16-Gb/s data rate on the MDB and
low-cost cable channel conditions without using equalization.
It also utilized the source-synchronous or forwarded clock
scheme without increasing the clock pin and channel number.
It accomplished the best FoM of 20.4 xW/Gb/s/dB and
occupied an area of 0.016 mm?.
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